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Introduction

• Machine Learning (ML) is increasingly applied for the control of safety-critical Cyber-Physical Systems (CPS). However, the probabilistic characteristics and black-box
nature of ML algorithms conflict with the safety culture traditionally adopted a safety-critical system.

• To properly address the safety of ML-based systems, one must implement the rigorous processes prescribed in functional safety, and utilize both: safety strategies known from
conventional systems development, and safety strategies developed specifically for ML-based systems.
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Phase Hazard Description

Requirements

Incomplete definition of data - Incomplete definition of all operation conditions, including corner and edge cases.
Incorrect objective function - Objective functions that overlook or do not correctly prioritize important safety aspects.
Inadequate performance measure - Inadequate selection of a performance measure leading to wrong output for portions of the dataset.
Incompleteness on testing/verification - Incomplete coverage of operation scenarios and/or inadequate definition of threshold values for performance metrics.
Inadequate safe operating values - Incorrect definition of values for “measure of confidence” or a comparison to “reasonable values” (threshold under which the risk level is acceptable).

Data Management

Inadequate distribution - Inadequate coverage of dataset identified in Requirements phase.
- Different distribution of training data and real operation data due to distribution shift.
- Different distribution of training data and real operation data due to lost or corrupt data.
- Absence or under-representation of rare examples (i.e., corner and edges cases).

Bias - Sample bias when samples are not representative.
- Measurement bias when data is collected from different sources.
- Confirmation bias which focus on information that confirms already held perceptions.
- Exclusion bias when important samples and/or features are removed.

Irrelevance - Data acquired contains extraneous and irrelevant information.
Quality deficiencies - Corrupt data due to measurement issues (sensors accuracy related).

- Incorrectly annotated data.
- Inadequate delta between cleaned data and real data.
- Introduction of non-realistic examples trough data augmentation techniques.

Model Development
Error rate - Measured error rate differing from real error rate due to finite nature of samples set.

- Failing to identify wrong predictions as incorrect (model “silently” fails).
Lack of interpretability - Lack of interpretability hides potential misbehaviour.

Model Testing and 
Verification

Incompleteness - Insufficient number of test samples which may result in an operational risk much larger than the identifiable actual risk for the test set.
Non-representative distribution - Test set is not representative, therefore the testing performance may not be accurate.

Model Deployment
Differences in operational environment - Failure in the subsystems that provide inputs.
Adversarial attacks - Incorrect output produced due to adversarial attacks.
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The ML lifecycle is depicted in Figure 1. Our previous work [1] focused on the
identification of safety hazards that could be introduced along the ML lifecycle.
Table 1 presents a summary of the main results. This extensive and detailed list
of hazards provides the foundation for identifying applicable safety strategies
addressing each one of these hazards. We believe that the certification of ML-
based systems needs to based on both product- and process-oriented measures.

For example, the “incomplete definition of data” hazard, encountered during the
Requirements phase, has a direct impact on the distribution of the final dataset.
An inadequate distribution may produce incorrect outputs, and ultimately result
in an unsafe system reaction.

Safety strategies based on product-oriented measures, such as the fail-safe
principle, could successfully mitigate such hazards. In the work of [2], the
principle aims to ensure that a system remains safe when it fails in its intended
operation, usually by assuming a safe state with reduced functionality. When a
failure is identified (reject option is produced) internal approaches, such as
explainability components, and as well external approaches to the ML
component, such as safety bag architectures or parallel execution of diversified
ML components, could be applied to identify or manage wrong model output.

On the other hand, process-oriented approaches based on quality metrics to assess the completeness of data should also be explored. The work of [3] proposes metrics such as
scenario coverage for ensuring that the data used in training has possibly covered all important scenarios. Furthermore, the work of [4] also proposed a Feature Space Partitioning
Tree (FSPT) technique which splits the feature space into multiple partitions with different training data densities, in order to identify those in which training samples are
insufficient. Both techniques mentioned could support the fail-safe strategy. Their implementation aims to trigger a fail-safe behavior for two different cases: when a sample is
close to the decision, and as well, when a sample is in an area represented by too few training examples.

Figure 1: Machine Learning lifecycle.
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Table 1: Overview of the hazards identified for the different phases of the ML lifecycle (here the hazards are briefly described, a detailed identification can be found in [1]).

Conclusion
• We believe that our work on machine learning related hazards is a step forward into future holistic approaches for safety engineering and certification of ML-based systems.
• Future work will focus on addressing safety strategies based on product- and process-oriented approaches.
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